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Abstract.  A n  integral equat ion is derived and solved numerically to compute  the flow and the free surface shape 
genera ted  when  water  flows from a line source into a fluid of  finite depth.  At  very low values of  the Froude number ,  
s tagnat ion point  solutions are found to exist over a cont inuous range in the parameter  space. For each value of the 
source submergence  depth  to free s t ream depth ratio, an upper  bound on the existence of s tagnat ion point solutions 
is found.  These  results are compared  with existing known solutions. A second integral equat ion formulat ion is 
discussed which investigates the hypothesis  that these upper  bounds  correspond to the formation of waves on the 
free surface. No waves are found,  however,  and the results of  the first method  are confirmed. 

1. Introduction 

The physical, chemical and biological properties of water to be withdrawn from a reservoir, 
cooling pond or solar pond can only be predicted if the flow pattern induced by the 
withdrawal can be determined in advance. These water bodies are all examples in which the 
determinat ion of these properties is of great importance for efficient or safe operation [13]. 
In all of  these cases, the water is stratified in density, a factor which is crucial to determining 

the flow. 
When the stratification is linear and the withdrawal rate is steady, the flow is quite well 

understood.  A recent summary of this situation is given in Imberger and Patterson [14]. If 
the water body is stratified into layers of finite thickness, the flow is qualitatively understood,  
but  many details remain unresolved. The actual situation is more complicated than either of 
these two cases since the stratification will have some more general form, and the flow is 
probably some combination of the two extremes. The work presented here examines the 
problem of withdrawal through a line sink from a single layer of finite depth with a free 
surface. Understanding this flow will shed more light on the case of withdrawal from distinct 

layers of fluid. 
Experiments  with two layers of fluid [11] suggest that for Froude numbers above some 

threshold value the free surface is drawn down directly into the sink. The flow conditions 
under  which this occurs are still uncertain, despite the experimental and numerical work 
which has been carried out. 

The flow can best be described in terms of a dimensionless parameter ,  the Froude number,  

{ q2 ~1/2 U 
F8 = \ g - ~ ]  - ~ , (1.1) 

where q is the discharge from the source per unit width, h s and U are the depth and velocity 
of the free stream respectively, and g is the acceleration due tO gravity. If g is replaced by 
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g'  = ( A p / p ) g  in this and all subsequent equations, where p is the density of the layer, and Ap 
is the difference in density between this layer and another  above it, then the problem 
becomes a consideration of the shape of the interface between two layers when no fluid is 
being withdrawn from the upper layer. 

In this paper,  solutions are computed at the low Froude number end of the spectrum for 
flow from a line source into a single fluid of finite depth. The mathematical description of 
this problem is the same as that for a sink flow because of the quadratic dependence of the 
free surface condition upon the velocity, i.e. a sink flow has exactly the same solution but 
with the velocity reversed in direction along the streamlines. 

Numerical evidence is presented which suggests that solutions with a stagnation point on 
the surface above the sink exist over all values of the submergence depth of the source, for 
Froude numbers up to some limiting value for each source depth. The results of a second 
formulation in which waves are possible on the free surface are discussed. No waves were 
found, however,  giving qualitative agreement with the first method. These results are 
consistent with earlier results on problems with a slightly different geometry [5, 10]. 

Wfien water flows from a line source into an homogeneous,  inviscid, incompressible fluid 
with a free surface, Craya [1], Tuck and Vanden Broeck [18], Hocking [8] and Vanden 
Broeck and Keller [19] have shown, for several different geometries, that if the fluid is of 
infinite depth,  there is a unique Froude number at which the free surface bends down into 
a cusp shape (see Fig. 1). In this case we must define the Froude number  to be F s = 

2~ 1 3 ~ I / 2  
q / g n s )  , where h s is the depth of the source. At  low values of the Froude number,  

Hocking and Forbes [10] have recently obtained numerical solutions in which a stagnation 
point forms on the free surface above the source (see Fig. 1). They were unable to obtain 
solutions of this type above a Froude number,  (Fs)  of about 1.4, suggesting a limit at this 
value. In a recent paper, Forbes and Hocking [7] found that when surface tension was 
included in the problem, solutions were limited by an upper bound in the Froude number  

0.0 

-h s 

Y ~ (FB= 0.15) 

s 
s 

, ' "  Cusp shape (F B = 1.0) 

Source 

I 
-hB 0.5 

I ! 

1.0 1.5 
X 

Fig. I. Sketch of the problem under consideration. The cusped free surface was computed for the case hs/h b = 0.5 
and F~ = 1 [12], and the stagnation point solution shown was computed for hs/h B = 0.5 and F B = 0.15. The free 
surface elevation has been magnified by a factor of 10 for the stagnation point solution. 
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which occurred at a fold in the parameter  space giving non-unique solutions at a single 
Froude  number  and source depth. 

Previously, Peregrine [17], Vanden Broeck,  Schwartz and Tuck [20], and Tuck and 
Vanden Broeck [18], had all at tempted to compute solutions of this type, but were unable to 
compute  solutions for F s up to the limiting value. The corresponding cusped solution was 
found at F s = 3.56 [18]. Tuck and Vanden Broeck [18] have shown that these are the only 
steady free surface configurations which are possible for this idealised problem. 

Forbes and Hocking [5] have computed stagnation point solutions numerically in the case 
of axisymmetric flow into a point sink, for values of F3s up to approximately 6.4. In three 
dimensions the Froude number  is defined as F3s ,. f~2t ,5xl/2 = t~g /gns) where Q is the total flux into 
the sink. At  F3s = 6.4, they found a secondary stagnation point formed on the free surface a 
small distance away from the primary point above the sink. As in the case of a line sink, no 
solutions were obtained for values of F3s larger than this. No solutions of the cusped type 
have yet been found for the three dimensional, axisymmetric case. 

If the layer is of finite depth, solutions with a cusp for flow from a line source have been 
found for all Froude numbers above a certain value, up to and including infinite Froude 
number  [2, 9, 12, 15, 19]. In some cases this lower bound was found to be unity, in others it 
was found to be greater. In addition, a single branch of solution in which locally unique 
cusped flows which are dependent  upon the height of the sink above the bottom were found 
for F B < 1.0 (see Fig. 5). These results are discussed in Vanden Broeck and Keller [19], and 
Hocking [12]. Mekias and Vanden Broeck [16] have computed solutions with a stagnation 
point for values of F B along a single branch in the parameter  space which is bounded both 
above and below (1 ~< F B ~< 1.22). Stagnation point solutions are not possible at infinite 
Froude  number.  Along this line in the parameter  space both solution types appear to exist. 

In section 2 of this paper,  an integral equation will be derived which will allow 
computat ion of the flow under consideration. In section 3 the first term in a small Froude 
number  expansion for the free surface angle will be calculated for comparison with the 
numerical scheme, which will be presented in section 4. An alternative formulation which 
was used in an at tempt to compute waves on the free surface will be discussed in section 5. 
In the final section, these results will be placed in context with other  work on this problem. 

2. Problem formulation 

The  steady, irrotational motion of an inviscid, incompressible fluid in the presence of gravity 
is to be examined. The fluid is of infinite depth and has a free surface above a line source. 

Let  z = x + iy be the physical plane, with the origin directly above the source and at the 
level of the free surface far away from the source, i.e. the level of the free stream (see Fig. 
1). The mathematical problem is to find a complex potential w(z )=  oh(x, y )+  i~(x,  y),  
which satisfies Laplace's equation (V2w = 0) within the flow domain, conditions of no flow 
across the solid boundaries and the free surface, and the condition of constant pressure on 
the free surface, provided by Bernoulli 's equation 

1 ( (0~b]  2 ( 0 ~ b ] 2 ] =  1 U2 
P / P = g Y +  2 \ O x /  + \ O y /  / 2 ' (2.1) 

on y = r/(x) where r/(x) is the equation of the interface shape, and U is the free stream 
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velocity of  the fluid far from the source. If we nondimensionalise with respect to the length 
(m2/8~2g)  1/3 and the velocity (mg/Tr) 1/3, where m is the source strength, then this equation 

becomes  

y + ( O q b l 2 + ( b q b ~ 2 = ( T r ) 2  
ox / Oy / , (2 .2)  

where h B is the free stream depth of the fluid, the nondimensional flux f rom the source is 7r, 
and hence the velocity at large distances from the source is 7r/h B. The flow is symmetric  
about  x = 0, and consequently only the region x I> 0 is considered. The Froude number  based 
on the free s t ream velocity and depth, F B is now given by F B = (27r2/h3) 1/2. To be consistent 

with previous work the Froude number  based on the source submergence depth,  F s, must be 
defined with double the flux into the region with x > 0 to account for the total flux into the 

(87r2/h 3"11/2 where h s is whole symmetr ic  region, and as a consequence takes the form F s = ~ sJ , 
the depth of the source beneath the free stream surface level. 

To  derive an integral equation for this problem we follow Hocking [12]. The trans- 

format ion  

e w = ~" (2.3) 

maps  the infinite strip between ~O = 0 and 0 = - 7r in the w-plane to the lower half of  the 
~'-plane. We choose to let w = 0 correspond to the stagnation point above the source, so that 

the free surface ~0 = 0, 4, > 0, lies along the real if-axis where ~ i> 1. The source lies at the 
origin in the if-plane, and the negative real axis corresponds to 0 = -Tr  (see Fig. 2). 

We seek w by solving for O ( g ' ) = 3 ( ( ) + i r ( f f ) ,  defined in relation to the complex 

conjugate  of the velocity field by 

rr e ia(~) (2.4) w ' ( z ( ¢ ) )  = 

The  magni tude of the velocity at any point is then given by [w'(z)] = (~r/hB) e "(¢), and the 
angle any streamline makes  with the horizontal is 3(~'). For stagnation point solutions, we 

require that 3 = 0 at ~" = 1 and 3 ~ 0 as g ' ~  ~. 
The free surface corresponds to the positive real ¢-axis for ¢ > 1, and r---~ 0 as ¢--9 ~ to 

conserve volume.  On the remainder  of the real g'-axis, which corresponds to the solid 
boundar ies  of the flow domain,  the streamlines must be parallel to the walls, so that the 
condition that there be no flow normal  to the solid boundaries is satisfied if 3(~') is chosen to 
be the angle of the wall to the horizontal,  i.e. 

0 if - ~  < ~" < ~'B ; 
3 ( ~ ) =  --7r/2 i f ~ ' B < ~ ' < 0 ;  

7r/2 i f 0 < { ~ < l .  

The  only singularities of the function 1~(~) in the ~'-plane are those at the origin, at g" = 1 and 
at ff = ~'B, corresponding to the source and the stagnation points above the source on the free 
surface and on the bot tom beneath  the source, respectively. All of these singularities can be 
shown to be weaker  than a simple pole, so that Cauchy's  Theorem can be applied to f l(~ ')  
on a path  consisting of the real {-axis, a semi-circle at Iz l  = ~ in the lower half plane, and a 
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Fig. 2. Mapped planes used in the problem formulation; (a) the complex velocity potential w-plane, (b) the lower 
half ~'-plane, and (c) the physical z-plane. 

circle of vanishing radius about the point ft. Hence,  for Im{~'} < 0 we have 

1 f_ ~ f~(~'o) 
f t ( ~ ' ) -  27ri ~ ~o-- ~ d~° '  

since ~--~0 as [~1- -~ .  If we let Im{~'}---~O-, we obtain 

~.(~.) = 1 f+~  
6(~0) 

and 

1 f ~  ~'(~'0) 6 ( ( ) =  ~ = ~0---~ d~'°' 

where the integrals are of Cauchy-Principal Value form. 

(2.5) 

(2.6) 
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Substituting the known values of 8(if)  into the equation for exp[r(ff)]  gives 

exp[r(~')]= [ (1 -  ~')~2~B- ~')]I/2 exp[ 1 ~+~ 6(~o) d o] • (2.7) 

The equation for constant pressure on the free surface, which can be obtained by combining 
equations (2.2), (2.3) and (2.4) must be satisfied, giving 

h n e -'(~°) sin 6(~'o) dff ° + e 2.(¢) = (2.8) 
7r ~'o 

on 1 ~< ~" < ~. This equation can be differentiated, rearranged and integrated to give the 
more  convenient form 

exp[z(ff)]  = 1 + 3 sin 6(~0) dff ° , (2.9) 
~ g  2 ~'o 

on 1 ~< ~" < ~. Combining (2.7) and (2.9) on the free surface gives a nonlinear integral 
equation for 6(if)  on 1 ~< ff < ~. The value of 8 is known elsewhere on the boundary from 
the boundary conditions, and hence we can obtain r from (2.6). Using 6 and r, it is possible 
to integrate (2.4) to obtain the location of points on the free surface. These may be written 
a s  

x(~') = x(ff*) + h__p_~ f [¢ e -*(¢°) cos 8(~'o) d~. ° 
77" J~  * ~0 ' 

and 

hn (5 e--(¢o) sin 6(~'o) 
y(~') = y(~'*) + - -  j¢ d~'o 

rr * ~'o 
(2.10) 

Since y--~O as ~'---~oo, the free surface condition requires that the height of the stagnation 
point is (Tr/hB) z, so that 

(7r) 2- hB 0. (2.11) 
C0 

The sink depth is 

h s = h B f f  e-~(¢°) (~BB)2 --~ - T o  dffo - , (2.12) 

and the base depth is 

h 8 = h s + h8 fo ¢~ e -~(¢°) -~ ~ d~o. (2.13) 
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At  small values of the Froude number,  we can obtain a solution to the equations generated 
by equating (2.7) and (2.9), by assuming that the angle of the free surface 8(~') can be 
written as 

8(~'B; ~ ')= F2a2(~'B; ~')+ F4(Sa(~B; ;~)+..., (3.1) 

Substituting this expression into (2.7) and (2.9), and equating like powers of FB, gives a set 
of equations, 

0 (1 ) :  

O(F~):  

1+ 3 f f  82( fiB; ~'0) d~o= I (1- ff)~2~-~B)]3/2 
~" Go 

f~ 64(~'B; ~'0)dffo= [(1- ff)(ff- ~'B)] 3/2 if0 ~2 .I ~ 82(00~B_~ ~ff0) d~. ° (3.2) 

Expressions for the values of 8i(~B ; ~'), i = 2, 4 . . . .  can be obtained by differentiating the 
successive equations. The first term is given by 

rr (1 - ~)1/2(~_ ~,B)1/2 
82( ~'n ; ~ ' ) -  2 ~.3 [~'8(~" - 2) + ~'1 • (3.3) 

Unfortunately,  the next term has a logarithmic character, and the series Can therefore only 
be treated as asymptotically valid. Nonetheless, it is still reasonable to compare it with our 
full numerical solutions for small values of the Froude number. 

An interesting point is that the value of ~2(~'B; ~') is always negative if ~'B > - 1 ,  which 
indicates that the surface asymptotes to the free stream level from above. On the other hand, 
if ~'B < - 1 ,  82(~" ) is positive over that range of the interval which satisfies the condition 

> 12~'B/( 1 + ~'B)], which indicates that the free surface dips below the free stream level 
before asymptoting to it from beneath. 

Figure 3 shows the expansion solution for the free surface angle (dashed lines) compared 
with the numerical solution for several cases in the range of interest. All of these examples 
are close to the limiting Froude number for these submergence depths, and the asymptotic 
result is beginning to diverge from the numerical solution. At smaller values of F B, however,  
the two solutions are almost indistinguishable. 

4. Numerical method 

The nonlinear integral equation described by equations (2.7) and (2.9) can be solved by 
computing the integrals numerically at a set of discrete points and solving for 8(~') using an 
iteration scheme. 
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Fig. 3. The angle of the free surface plotted against the mapped variable a for (i) F B = 0.2, hs/h a = 1, (ii) 
F B = 0.15, hs/h B = 0.5 and (iii) F B = 0.075, hs/h n = 0.27. The solid line is the nonlinear numerical solution, while 
the dashed line in each case is the linearised solution. All solutions are approaching the limiting value of F~. 

In  o rde r  to avoid the difficulties which arise f rom the principal value integrals and the 

semi-infinite domain  of  integrat ion,  the following p rocedure  was adopted .  The  range of  

f r o m  1 to infinity was m a p p e d  to (0, 7r/2) using the t ransformat ion  ~" = sin-2a.  The  integral  

equa t ion  then becomes  

[ 3 f 0  1 6 f ; /2s in6(O)  r r / 2  ~(0) COS 0 dO = 1 + --GS" dO (4.1) 
[ 1  - ~'B sinea] 3/2 exp (sinZa - sin20) sin 0 7rF B tan 0 " 

The  Cauchy -P r inc ipa l  Value integral was modified by letting 6 ( a ) =  f (a)s in  a and adding 

and subtract ing the value of  f at o~ = 0 so that  

f ; /2  6(0) cos 0 
(sin2ot - sin20) sin 0 

dO 

b e c o m e s  

_(~'2 (f(~) -f(o)) cos 0 

J 0 (sinZc~ - sin20) 

_ _  [ l + s i n a ]  
d 0 +  f ( a )  log - -  

2 s i n a  1 s i n a  ' 

which is no longer  singular,  and can be integrated numerically.  All integrat ion was 

p e r f o r m e d  using cubic splines on a variable mesh,  so that  points  could be easily concen t ra ted  
in the region of  interest ,  in this case near  the s tagnat ion point.  In  all calculations the 

dis tr ibut ion of  points  was found  to make  little difference to the results, and an even 

dis tr ibut ion was used on most  occasions.  The  interval was divided into N sub-intervals,  

0 ~-'~- O¢0, O~ I . . . .  , a N =  7r/2. Equa t ion  (4.1) was evalua ted  at the internal mesh points,  

a 2 , . . . ,  aN_ 1 giving N - 2 equat ions  for  the N - 1 unknowns  6 ~ , . . . ,  6N_ 1. The  equa t ion  at 
the  omi t t ed  point  was replaced by equat ion  (2.11),  which is equivalent  to (4.1) evalua ted  at 
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the stagnation point. The  point oq corresponds to a point a long distance out on the free 
surface, and while this modification made no difference to the results, it significantly 
improved the convergence of  the numerical scheme as N was increased because the correct 
condition was satisfied at the important  stagnation point. 

This system of nonlinear algebraic equations was solved for 6 using a damped Newton 
iteration scheme, starting with a guess provided by the asymptotic series solution for small 
values of F 8, and halving the length of the correction vector if there was no decrease in the 
residual er ror  at each step. 

The  numerical scheme converged rapidly for small values of F 8, usually taking only 3 
iterations to satisfy the equations with an error  of less than 10 -1° at all points. As F B was 
increased for each value of source depth a point was eventually reached at which the 
iterations failed to converge. 

As F B was increased this breakdown was signalled by the appearance of oscillations of 
wavelength equal to the size of the interval between the discrete points. These oscillations 
were clearly of numerical origin, and grew rapidly in amplitude as F n was increased until the 
complete  failure of the method.  At  each value of the submergence depth of the source the 
limiting value of F 8 was taken as the largest value at which these numerically induced 
oscillations did not appear. The solutions computed were found to be accurate to 4 figures 
when N = 240, although there appeared to be a decrease in accuracy as ~'B--->-~. 

5. The possibility of  waves 

It is well known that flows in a fluid of finite depth may have waves on the free surface, 
provided the free stream Froude number  is less than one. It is therefore possible that the 
breakdown of the solution method presented in this paper is due to the formation of waves 
on the surface. The presence of such waves at a = 0, which corresponds to the point at 
downstream infinity in the physical plane, would be a singularity of a particularly unpleasant 
type,  and the method would surely fail. 

In an at tempt  to overcome this difficulty, an alternative method was used which has in the 
past produced waves for some similar free surface flows [3, 4]. This method formulates the 
free surface flow problem as an integral equation in the physical plane using the arclength 
along the free surface as the independent  variable. The details of this work are described in 
an internal report ,  Forbes and Hocking [6]. The important result of this work, however,  is 
that despite the clear capability of this physical plane formulation to reproduce waves if they 
exist [3, 4], no waves were obtained. 

The results obtained using this method were found to differ very little from those obtained 
using the surface angle method.  There  was a slight discrepancy in the range in parameter  
space for which solutions were obtained, but this was attributable to numerical error,  and 
does not  reflect any differences in the physical solutions being obtained. This is a significant 
result, since it provides circumstantial evidence that the breakdown of the solutions is not 
caused by the formation of waves on the free surface, and consequently some other  
mechanism must be found to explain this phenomenon.  

As in the case of the first method and the work of Hocking and Forbes [10], and Tuck and 
Vanden Broeck [18], as the Froude number  was increased small waves of numerical origin 
appeared on the free surface when breakdown was imminent. 
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6. Resul ts  and  discuss ion 

Using the results of the surface angle method, solutions were computed over a range of 
submergence depths and Froude numbers to map the region in parameter space in which 
such solutions exist. Figure 3 shows some typical solutions for the surface angle plotted 
against the mapped variable a over a range of Froude number and submergence depths of 
the source. In each case these are compared with the asymptotic solutions computed in 
section 3. For values of the Froude number smaller than those shown, the asymptotic 
solutions were almost graphically indistinguishable from the full nonlinear solutions. As in 
the asymptotic solution, the surface angle stays negative over the full interval for values of 
~'B > - 1 ,  but becomes positive for some of the range for if8 > -1 .  The dividing situation at 
~'B = - 1  corresponds to that in which the source submergence depth is almost exactly one 
half of the free stream depth. 

The corresponding free surface profiles are shown in Fig. 4, revealing both solutions in 
which the free surface approaches the free stream level from above, when h s > ½h B, and 
from below, when h s < ½h 8. 

Figure 5 shows all of the solutions which are known to exist within the parameter space at 
the time of writing, with the exception of the supercritical stagnation point solutions of 
Mekias and Vanden Broeck [16]. In all cases, the pattern is very similar to that for the case 
of a line sink in a fluid of infinite depth. Stagnation point solutions exist for small values of 
the Froude number, Fs,  up to some limiting value. There is no apparent reason for the 
breakdown of these solutions, but it is consistent over all computations attempted. There is 
then a range of Froude number within which there do not appear to be any steady solutions, 
before either a unique cusped solution, or a continuous range of cusped solutions is reached, 
depending on the geometry of the problem. 

In the limit as hs/hB---~O, i.e. ~'B---~-~ the limiting Froude number based on the source 
depth, Fs, should approach that obtained in Hocking and Forbes [10]. Figure 6 shows the 
limiting Froude number for each source depth, and despite the lessening of accuracy as ~'B 
grows in magnitude, the solution appears to be approaching the correct value of F s ~-1.4. 
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Fig. 4. Free surface profiles corresponding to the examples (i), (ii) and (iii) shown in Fig. 3. 
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Fig. 5. Regions in the parameter space in which solutions have been computed. The new stagnation point solutions 
are those shown for F B ~ 1. 

In the region in which no solutions appear to exist, it is possible that there are steady 
solutions with waves on the free surface. The surface angle method used in this paper would 
not  be able to compute such solutions because the mappings involved would introduce a 
singularity at a = 0 if waves were present. Considerable effort was expended in an at tempt to 
find solutions with waves using the second formulation, yet none were found, despite success 
in the past (see e.g. [3, 4]). In the end, these results merely serve to confirm those obtained 
using the surface angle technique. It is perhaps not surprising that the solutions should 
behave in this way, since the solutions in a fluid of infinite depth [10] broke down in a very 
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Fig. 6. A plot showing the numerically computed limiting values of the source depth Froude number, Fs, against 
the source to base depth ratio. The limiting value as hs/h B ~ 0 shows reasonable agreement with that obtained by 
Hocking and Forbes [10]. 
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similar manner, yet in that case there was no possibility of waves on the free surface a long 
way from the source because the fluid becomes stagnant in that limit. 

The evidence therefore suggests that there are no solutions with waves, and once again we 
are left with no explanation for what is happening in this region, other than by analogy with 
the results of Forbes and Hocking [7] in which surface tension was included in the problem. 
These results are further complicated by the fact that for the case of the line sink on the 
bottom of the channel,  experimental results suggest that the drawdown of the interface 
between two layers occurs at a Froude number of about 0.4 [11]. This places it somewhere 
between the maximum Froude number stagnation point solutions (F 8 = 0 . 2 3 )  and the 
minimum Froude number cusped solutions at F B = 1.0 [12, 19] which were once thought to 
characterise the critical drawdown. 

One possibility is that the flows in this region are unsteady, and consequently a more 
sophisticated numerical approach would be required to obtain solutions. Work is continuing 
on these very difficult issues, but for the moment they must remain unresolved. 
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